Deep Coded Aperture Design: An End-to-End Approach for Computational Imaging Tasks

نویسندگان

چکیده

Covering from photography to depth and spectral estimation, diverse computational imaging (CI) applications benefit the versatile modulation of coded apertures (CAs). The lightwave fields as space, time, or can be modulated obtain projected encoded information at sensor that is then decoded by efficient methods, such modern deep learning decoders. Although CA fabricated produce an analog modulation, a binary preferred since more straightforward calibration, higher speed, lower storage are achieved. As performance decoder mainly depends on structure CA, several works optimize ensembles customizing regularizers for particular application without considering critical physical constraints CAs. This work presents end-to-end (E2E) learning-based optimization CAs CI tasks. design method aims cover wide range problems, easily changing loss function approach. designed includes fulfill widely used sensing requirements applications. Mainly, selected transmittance, compression ratio, correlation among measurements. At same solution encouraged, task maximized in restoration, classification, semantic segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational imaging systems: joint design and end-to-end optimality.

A framework is proposed for optimal joint design of the optical and reconstruction filters in a computational imaging system. First, a technique for the design of a physically unconstrained system is proposed whose performance serves as a universal bound on any realistic computational imaging system. Increasing levels of constraints are then imposed to emulate a physically realizable optical fi...

متن کامل

An End - to - End Approach to Schedule Tasks with Shared

In this paper we propose an end-to-end approach to scheduling tasks that share resources in a multipro-cessor or distributed systems. In our approach, each task is mapped into a chain of subtasks, depending on its resource accesses. After each subtask is assigned a proper priority, its worst-case response time can be bounded. Consequently the worst-case response time of each task can be obtaine...

متن کامل

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

Computational Photography: Coded Exposure and Coded Aperture Imaging

The emerging field of computational photography is exploring the possibilities of digital photography beyond the imitation of film cameras. Novel illumination, optics, sensors, and processing methods are employed to expand the set of images that cameras can create. This thesis introduces the field of computational photography and presents two exemplary techniques that address the problem of blu...

متن کامل

JEJUNAL EVERSION MUCOSECTOMY AND INVAGINATION: AN INNOVATIVE TECHNIQUE FOR THE END TO END PANCREATICOJEJUNOSTOMY

 ABSTRACT Background: The pancreatojejunostomy has notoriously been known to carry a high rate of operative complications, morbidity and mortality, mainly due to anastomotic leak and ensuing septic complications. Objective: In order to decrease anastomotic leak and its attendant morbidity and mortality in operations requiring a pancreato-jejunal anastomosis, and also in order to simplify the op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on computational imaging

سال: 2021

ISSN: ['2333-9403', '2573-0436']

DOI: https://doi.org/10.1109/tci.2021.3122285